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Outline

• L2 TV Functional → L1 TV Functional

• Properties of L1 TV : f = χΩ ⇒ u = χΣ for some Σ.

• Properties of L1 TV : For f = χΩ,
∫
|∇u|+ λ

∫
|u− f | = Per(Σ) + λ|Σ4Ω|

• Properties of L1 TV: Ω = B2
λ

and non-uniqueness.

• Properties of L1 TV: Preservation of contrast: for any C2 set Ω there is a λ∗

such that λ ≥ λ∗ implies that Σ = Ω.

• New Result 1: B2
λ
⊂ Ω → B2

λ
⊂ Σ

• New Results 2: B2
λ
⊂
∼

Ω → B2
λ−ε ⊂ Σ

• New Result 3: A complete characterization of Σ for convex Ω.



Motivation

We are pursuing this research with the following objectives in mind:

• To understand precise nature of denoising/reconstruction we want to understand,
in great detail, how methods deform/preserve simple images.

• Allows us to compare denoising methods and understand implicit biases.

• Moves us towards a precise and systematic approach to prior informed
regularization for complex experimental images.



ROF Model and BV Functions

The classic Rudin-Osher-Fatemi (ROF) total variation regularized functional:

F (u) ≡
∫
|∇u|dx + λ

∫
|u− f |2dx (1)

is characterized by simultaneous edge recovery/preservation and noise reduction
but also loss of contrast.

(I) total variation of u =
∫
|∇u|

(II) u ∈ BV (Ω) if u ∈ L1(Ω) and
∫
|∇u| < ∞.

(III)

∫
|∇u| = sup{

∫
∇u · ~g ; |~g| < 1, ~g ∈ C1

0(Ω; Rn)} (2)

= sup{
∫

udiv~g ; |~g| < 1, ~g ∈ C1
0(Ω; Rn)} (3)

for u ∈ W 1,1.



ROF Model and BV Functions: cont.

(IV) For u ∈ L1(Ω), we use the last equation to define
∫
|∇u|

(V) The theory for BV (Ω) is extensive and quite beautiful [see for example Giusti’s
“Minimal Surfaces and Functions of Bounded Variation” and Evan’s and Gariepy’s
“Measure Theory and Fine Properties of Functions”]

Other facts:

1. TV (u) is lower semi-continuous in L1

2. Approximation, compactness, and trace results are similar to Sobolev spaces.

3. Du = ∇u is a vector valued Radon measure

4.
∫
|∇u| =

∫ umax

umin
Per({x ; u(x) > t})dt ( coarea formula )



L1 TV Functional: TV + L1 Data Fidelity

The L1 TV functional, previously studied by [Alliney], [Nikolova] and [Chan and
Esedoglu] is given by:

F (u) ≡
∫
|∇u|dx + λ

∫
|u− f |dx (4)

and is characterized by simultaneous edge recovery/preservation and noise reduction
without the loss of contrast. But this is not all:

1. F (u) is not strictly convex ⇒ we do not have uniqueness!

2. u is a minimizer for f → Cu is a minimizer for Cf

3. f = χΩ → u = χΣ.

We now look at the properties of L1 TV a bit more closely.



L1 TV: f = χΩ ⇒ u = χΣ for some Σ

Result:[Chan and Esedoglu] If u is any minimizer of Fλ(u) then for almost all
µ ∈ [0, 1],

χ{x:u>µ}

is also a minimizer of Fλ(u).

One Dimensional Example: λ determines which interval of Ω appears in Σ.

χΩ χΣ

→

Figure 1: Small segments disappear: λ determines “small”

Segment preserved if {Per(I) = 2 < λLI ⇔ LI > 2
λ}.



L1 TV: f = χΩ → F (u) = F (Σ) = Per(Σ) + λ|Σ4Ω|

For characteristic functions u = χΣ(binary images)
∫
|∇u| is exactly the perimeter

and λ
∫
|u− f | = λ

∫
|χΣ − χΩ| = λ

∫
|Σ4Ω|.

Σ

Ω

0

1

∫
|∇χΣ| = Per(Σ) λ

∫
|u− f | = λ

∫
|χΣ − χΩ| = λ

∫
|Σ4Ω|



L1 TV: Ω = B2
λ

and non-uniqueness.

Result:[Chan and Esedoglu] If Ω = B2
λ

then u = αχB2
λ

is a minimizer for any

α ∈ [0, 1].

One can therefore concoct Ω’s whose solutions Σ(λ) have, as λ → ∞, an infinite
number of non-uniqueness points ...
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L1 TV: smooth Ω + big λ imply Σ = Ω.

The previous example demonstrated an Ω that is never reproduced by Σ as λ →∞.
When Ω is a bounded, C2 set this can’t happen:

Result:[Chan and Esedoglu] For Ω bounded and C2 there is a λ∗ < ∞ such that
for all λ ≥ λ∗, Σ = Ω.

Choose ~g such that
∫
Ω

1div~g = Per(Ω):

R
∇χΩ · ~g =

R
Ω 1div~g

Ω

Figure 2: choosing a vector field



L1 TV: smooth Ω + big λ imply Σ = Ω.

Per(Σ) + λ|Σ4Ω| ≥
∫

Σ

1div~g + λ

∫
Ω∩Σc

1 + λ

∫
Ωc∩Σ

1 (5)

=
∫

Ω∩Σ

1div~g +
∫

Ωc∩Σ

1div~g + λ

∫
Ω∩Σc

1 + λ

∫
Ωc∩Σ

1 (6)

≥
∫

Ω∩Σ

1div~g +
∫

Ωc∩Σ

1div~g +
∫

Ω∩Σc
1div~g + λ

∫
Ωc∩Σ

1 (7)

=
∫

Ω

1div~g +
∫

Ωc∩Σ

1(λ + div~g) (8)

≥ Per(Ω) (9)

as long as λ > ||div~g||∞.



New Result 1: B2
λ
⊂ Ω → B2

λ
⊂ Σ

Theorem 1. If Br ⊂ Ω where r ≥ 2
λ, then Br ⊂ Σ.

In particular, we can conclude that the boundary of Σ is in the envelope of inside
and outside 2

λ balls.
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New Result 1: B2
λ
⊂ Ω → B2

λ
⊂ Σ

Per(    |    )B B rr

1 = |          |

Br

Ω

1
2

Σ

ΣBrPer(    |    )

Σ c

B rΣ

\ Σr2 = |         |B

U

ΣrB

c

Per(   |     )

E(Σ ∪Br)− E(Σ) = (Per(Br)− λ|Br|) + (λ|Br ∩ Σ| − Per(Br ∩ Σ))(10)

=
(

2πr − 2
R

πr2

)
+

(
2
R

πρ2 − 2πρ∗
)

(11)

= 2πr(1− r

R
) + 2πρ(

ρ

R
− ρ∗

ρ
) (12)



New Result 2: B2
λ
⊂
∼

Ω → B2
λ−ε ⊂ Σ

Per(    |    )B

B

B

B

B r

1 = |          |

Br

\rB Σ2 = |         |

r Σ c

r Ωc Σ cU U

3 = |                   |

r ΩcU U

Σ4 = |                  |

U

r Ωc= |            | = 3 + 4

1
2

Σ

ΣBrPer(    |    )

B rΣ

U

ΣrB

c

Per(   |     )Ω

\rB Ω|         |Per(    |    )Per(    |    )

E(Σ ∪Br)− E(Σ) ≤ 2πr(1− r

R
) + 2πρ(

ρ

R
− ρ∗

ρ
) + 2λ|Br \ Ω| (13)

Theorem 2. Given a ball Br̂ with 2
λ < r̂ < 5

λ and an ε such that (1− 1√
2
) > ε > 0,

we can choose a θ > 0 such that if |Br\Ω| < θ|Br̂|, then Br∗ ⊂ Σ for r∗ = (1−ε)2
λ.



Idea of proof: A Gronwall inequality and Comparisons
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��

Σ|B  \    |R
B  r

B  R

E(Σ ∪Br)− E(Σ) ≤ −Per(Σ; Br(x0)) + Per(Br; Σc) + λ|Br \ Σ| (14)

≤ −C
√

v(r) + v̇(r) + λv(r) (v(r) ≡ |Br \ Σ|) (15)

0 ≤ −C
√

v(r) + v̇(r) + λv(r) ⇒
√

v(r) ≤ CR
2

(
e−

R−r
R − 1

)
+

√
|BR \ Σ|

⇒ small enough |BR \ Σ| ⇒ v(R− ε) = 0 ⇒ BR−ε ⊂ Σ .

|BR \ Ω| small
?⇒ |BR \ Σ| small



Idea of proof:

The rest of the proof is a fairly intricate argument showing that when:

|BR \ Ω| < δ

then of the three cases:

1 |BR \ Σ| ≤ Nδ

2 Nδ ≤ |BR \ Σ| < 1
4πR2

3 1
4πR2 ≤ |BR \ Σ|

only case 1 occurs. This is obtained by making use of:

E(Σ ∪Br)− E(Σ) ≤ 2πr(1− r

R
) + 2πρ(

ρ

R
− ρ∗

ρ
) + 2λ|Br \ Ω| (16)



New Result 3: Exact Σ for any convex Ω

Theorem 3. Using a recent result of Allard’s, we can conclude that for convex
Ω, Σ = the union of all 1

λ balls which are contained in Ω PROVIDED there is at
least one 2

λ ball contained in Ω.

Outline of Proof:

If Ω is convex and Σ (which must be contained in Ω) is not empty, then Σ is the
union of the 1

λ balls in Ω. Our result says that if Ω contains a 2
λ ball, then it is

contained in a solution Σ. Therefore, using Allard’s result, Σ must equal the union
of 1

λ balls in Ω.



Comments and Conclusions

• To Do: Establish connections to morphology – opening and closing, etc.

• To Do: Exact solutions with noise – further results.

• To Do: Understand the regularization and reconstruction aspects image analysis
for experimental data in which physics is partly understood and partly being
explored.


